Unsupervised Learning: Trade&Ahead

Marks: 60

Context

The stock market has consistently proven to be a good place to invest in and save for the future. There are a lot of compelling reasons to invest in stocks. It can help in fighting inflation, create wealth, and also provides some tax benefits. Good steady returns on investments over a long period of time can also grow a lot more than seems possible. Also, thanks to the power of compound interest, the earlier one starts investing, the larger the corpus one can have for retirement. Overall, investing in stocks can help meet life's financial aspirations.

It is important to maintain a diversified portfolio when investing in stocks in order to maximise earnings under any market condition. Having a diversified portfolio tends to yield higher returns and face lower risk by tempering potential losses when the market is down. It is often easy to get lost in a sea of financial metrics to analyze while determining the worth of a stock, and doing the same for a multitude of stocks to identify the right picks for an individual can be a tedious task. By doing a cluster analysis, one can identify stocks that exhibit similar characteristics and ones which exhibit minimum correlation. This will help investors better analyze stocks across different market segments and help protect against risks that could make the portfolio vulnerable to losses.

Objective

Trade&Ahead is a financial consultancy firm who provide their customers with personalized investment strategies. They have hired you as a Data Scientist and provided you with data comprising stock price and some financial indicators for a few companies listed under the New York Stock Exchange. They have assigned you the tasks of analyzing the data, grouping the stocks based on the attributes provided, and sharing insights about the characteristics of each group.

Data Dictionary

  • Ticker Symbol: An abbreviation used to uniquely identify publicly traded shares of a particular stock on a particular stock market
  • Company: Name of the company
  • GICS Sector: The specific economic sector assigned to a company by the Global Industry Classification Standard (GICS) that best defines its business operations
  • GICS Sub Industry: The specific sub-industry group assigned to a company by the Global Industry Classification Standard (GICS) that best defines its business operations
  • Current Price: Current stock price in dollars
  • Price Change: Percentage change in the stock price in 13 weeks
  • Volatility: Standard deviation of the stock price over the past 13 weeks
  • ROE: A measure of financial performance calculated by dividing net income by shareholders' equity (shareholders' equity is equal to a company's assets minus its debt)
  • Cash Ratio: The ratio of a company's total reserves of cash and cash equivalents to its total current liabilities
  • Net Cash Flow: The difference between a company's cash inflows and outflows (in dollars)
  • Net Income: Revenues minus expenses, interest, and taxes (in dollars)
  • Earnings Per Share: Company's net profit divided by the number of common shares it has outstanding (in dollars)
  • Estimated Shares Outstanding: Company's stock currently held by all its shareholders
  • P/E Ratio: Ratio of the company's current stock price to the earnings per share
  • P/B Ratio: Ratio of the company's stock price per share by its book value per share (book value of a company is the net difference between that company's total assets and total liabilities)

Importing necessary libraries and data

In [ ]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_theme(style='darkgrid')
pd.set_option("display.max_columns", None)
pd.set_option("display.max_rows", 200)
from sklearn.preprocessing import StandardScaler
from scipy.spatial.distance import cdist, pdist
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
from yellowbrick.cluster import KElbowVisualizer, SilhouetteVisualizer
from sklearn.cluster import AgglomerativeClustering
from scipy.cluster.hierarchy import dendrogram, linkage, cophenet
import warnings
warnings.filterwarnings("ignore")
In [ ]:
from google.colab import drive
drive.mount('/content/drive') 
Mounted at /content/drive
In [ ]:
data = pd.read_csv('/content/drive/MyDrive/DSBA/Unsupervised Learning/Trade&Ahead/stock_data.csv')

Data Overview

In [ ]:
print(f"There are {len(data.axes[0])} rows and {len(data.axes[1])} columns.")
There are 340 rows and 15 columns.
In [ ]:
data.sample(n=10, random_state=1)
Out[ ]:
Ticker Symbol Security GICS Sector GICS Sub Industry Current Price Price Change Volatility ROE Cash Ratio Net Cash Flow Net Income Earnings Per Share Estimated Shares Outstanding P/E Ratio P/B Ratio
102 DVN Devon Energy Corp. Energy Oil & Gas Exploration & Production 32.000000 -15.478079 2.923698 205 70 830000000 -14454000000 -35.55 4.065823e+08 93.089287 1.785616
125 FB Facebook Information Technology Internet Software & Services 104.660004 16.224320 1.320606 8 958 592000000 3669000000 1.31 2.800763e+09 79.893133 5.884467
11 AIV Apartment Investment & Mgmt Real Estate REITs 40.029999 7.578608 1.163334 15 47 21818000 248710000 1.52 1.636250e+08 26.335526 -1.269332
248 PG Procter & Gamble Consumer Staples Personal Products 79.410004 10.660538 0.806056 17 129 160383000 636056000 3.28 4.913916e+08 24.070121 -2.256747
238 OXY Occidental Petroleum Energy Oil & Gas Exploration & Production 67.610001 0.865287 1.589520 32 64 -588000000 -7829000000 -10.23 7.652981e+08 93.089287 3.345102
336 YUM Yum! Brands Inc Consumer Discretionary Restaurants 52.516175 -8.698917 1.478877 142 27 159000000 1293000000 2.97 4.353535e+08 17.682214 -3.838260
112 EQT EQT Corporation Energy Oil & Gas Exploration & Production 52.130001 -21.253771 2.364883 2 201 523803000 85171000 0.56 1.520911e+08 93.089287 9.567952
147 HAL Halliburton Co. Energy Oil & Gas Equipment & Services 34.040001 -5.101751 1.966062 4 189 7786000000 -671000000 -0.79 8.493671e+08 93.089287 17.345857
89 DFS Discover Financial Services Financials Consumer Finance 53.619999 3.653584 1.159897 20 99 2288000000 2297000000 5.14 4.468872e+08 10.431906 -0.375934
173 IVZ Invesco Ltd. Financials Asset Management & Custody Banks 33.480000 7.067477 1.580839 12 67 412000000 968100000 2.26 4.283628e+08 14.814159 4.218620
In [ ]:
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 340 entries, 0 to 339
Data columns (total 15 columns):
 #   Column                        Non-Null Count  Dtype  
---  ------                        --------------  -----  
 0   Ticker Symbol                 340 non-null    object 
 1   Security                      340 non-null    object 
 2   GICS Sector                   340 non-null    object 
 3   GICS Sub Industry             340 non-null    object 
 4   Current Price                 340 non-null    float64
 5   Price Change                  340 non-null    float64
 6   Volatility                    340 non-null    float64
 7   ROE                           340 non-null    int64  
 8   Cash Ratio                    340 non-null    int64  
 9   Net Cash Flow                 340 non-null    int64  
 10  Net Income                    340 non-null    int64  
 11  Earnings Per Share            340 non-null    float64
 12  Estimated Shares Outstanding  340 non-null    float64
 13  P/E Ratio                     340 non-null    float64
 14  P/B Ratio                     340 non-null    float64
dtypes: float64(7), int64(4), object(4)
memory usage: 40.0+ KB
In [ ]:
df = data.copy()
In [ ]:
df.duplicated().sum()
Out[ ]:
0

There are no duplicate values in the data.

In [ ]:
df.isnull().sum()
Out[ ]:
Ticker Symbol                   0
Security                        0
GICS Sector                     0
GICS Sub Industry               0
Current Price                   0
Price Change                    0
Volatility                      0
ROE                             0
Cash Ratio                      0
Net Cash Flow                   0
Net Income                      0
Earnings Per Share              0
Estimated Shares Outstanding    0
P/E Ratio                       0
P/B Ratio                       0
dtype: int64

There are no missing values in the data.

In [ ]:
df.describe(include='all').T
Out[ ]:
count unique top freq mean std min 25% 50% 75% max
Ticker Symbol 340 340 AAL 1 NaN NaN NaN NaN NaN NaN NaN
Security 340 340 American Airlines Group 1 NaN NaN NaN NaN NaN NaN NaN
GICS Sector 340 11 Industrials 53 NaN NaN NaN NaN NaN NaN NaN
GICS Sub Industry 340 104 Oil & Gas Exploration & Production 16 NaN NaN NaN NaN NaN NaN NaN
Current Price 340.0 NaN NaN NaN 80.862345 98.055086 4.5 38.555 59.705 92.880001 1274.949951
Price Change 340.0 NaN NaN NaN 4.078194 12.006338 -47.129693 -0.939484 4.819505 10.695493 55.051683
Volatility 340.0 NaN NaN NaN 1.525976 0.591798 0.733163 1.134878 1.385593 1.695549 4.580042
ROE 340.0 NaN NaN NaN 39.597059 96.547538 1.0 9.75 15.0 27.0 917.0
Cash Ratio 340.0 NaN NaN NaN 70.023529 90.421331 0.0 18.0 47.0 99.0 958.0
Net Cash Flow 340.0 NaN NaN NaN 55537620.588235 1946365312.175789 -11208000000.0 -193906500.0 2098000.0 169810750.0 20764000000.0
Net Income 340.0 NaN NaN NaN 1494384602.941176 3940150279.327936 -23528000000.0 352301250.0 707336000.0 1899000000.0 24442000000.0
Earnings Per Share 340.0 NaN NaN NaN 2.776662 6.587779 -61.2 1.5575 2.895 4.62 50.09
Estimated Shares Outstanding 340.0 NaN NaN NaN 577028337.75403 845849595.417695 27672156.86 158848216.1 309675137.8 573117457.325 6159292035.0
P/E Ratio 340.0 NaN NaN NaN 32.612563 44.348731 2.935451 15.044653 20.819876 31.764755 528.039074
P/B Ratio 340.0 NaN NaN NaN -1.718249 13.966912 -76.119077 -4.352056 -1.06717 3.917066 129.064585

Exploratory Data Analysis (EDA)

  • EDA is an important part of any project involving data.
  • It is important to investigate and understand the data better before building a model with it.
  • A few questions have been mentioned below which will help you approach the analysis in the right manner and generate insights from the data.
  • A thorough analysis of the data, in addition to the questions mentioned below, should be done.

Questions:

  1. What does the distribution of stock prices look like?
  2. The stocks of which economic sector have seen the maximum price increase on average?
  3. How are the different variables correlated with each other?
  4. Cash ratio provides a measure of a company's ability to cover its short-term obligations using only cash and cash equivalents. How does the average cash ratio vary across economic sectors?
  5. P/E ratios can help determine the relative value of a company's shares as they signify the amount of money an investor is willing to invest in a single share of a company per dollar of its earnings. How does the P/E ratio vary, on average, across economic sectors?

Univariate Analysis

In [ ]:
def histogram_boxplot(df, feature, figsize=(12, 7), kde=False, bins=None):
    """
    Boxplot and histogram combined

    data: dataframe
    feature: dataframe column
    figsize: size of figure (default (12,7))
    kde: whether to the show density curve (default False)
    bins: number of bins for histogram (default None)
    """
    f2, (ax_box2, ax_hist2) = plt.subplots(
        nrows=2,  
        sharex=True,  
        gridspec_kw={"height_ratios": (0.25, 0.75)},
        figsize=figsize,
    )  
    sns.boxplot(
        data=df, x=feature, ax=ax_box2, showmeans=True, color="violet"
    )  
    sns.histplot(
        data=df, x=feature, kde=kde, ax=ax_hist2, bins=bins, palette="winter"
    ) if bins else sns.histplot(
        data=df, x=feature, kde=kde, ax=ax_hist2
    )  
    ax_hist2.axvline(
        df[feature].mean(), color="green", linestyle="--"
    )  
    ax_hist2.axvline(
        df[feature].median(), color="black", linestyle="-"
    )  

Observations on Current price -

In [ ]:
histogram_boxplot(df, 'Current Price')

Observations on Price Change -

In [ ]:
histogram_boxplot(df, 'Price Change') 

Observations on Volatility -

In [ ]:
histogram_boxplot(df, 'Volatility')

Observations on ROE -

In [ ]:
histogram_boxplot(df, 'ROE')

Observations on Cash Ratio -

In [ ]:
histogram_boxplot(df, 'Cash Ratio')

Observations on Net Cash Flow -

In [ ]:
histogram_boxplot(df, 'Net Cash Flow')

Observations on Net Income -

In [ ]:
histogram_boxplot(df, 'Net Income')

Observations on Earnings Per Share -

In [ ]:
histogram_boxplot(df, 'Earnings Per Share') 

Observations on Estimated Shares Outstanding -

In [ ]:
histogram_boxplot(df, 'Estimated Shares Outstanding')

Observations on P/E Ratio -

In [ ]:
histogram_boxplot(df, 'P/E Ratio')

Observations on P/B Ratio -

In [ ]:
histogram_boxplot(df, 'P/B Ratio')
In [ ]:
def labeled_barplot(df, feature, perc=False, n=None):
    """
    Barplot with percentage at the top

    data: dataframe
    feature: dataframe column
    perc: whether to display percentages instead of count (default is False)
    n: displays the top n category levels (default is None, i.e., display all levels)
    """

    total = len(df[feature]) 
    count = df[feature].nunique()
    if n is None:
        plt.figure(figsize=(count + 1, 5))
    else:
        plt.figure(figsize=(n + 1, 5))

    plt.xticks(rotation=90, fontsize=15)
    ax = sns.countplot(
        data=df,
        x=feature,
        palette="Paired",
        order=df[feature].value_counts().index[:n].sort_values(),
    )

    for p in ax.patches:
        if perc == True:
            label = "{:.1f}%".format(
                100 * p.get_height() / total
            )  
        else:
            label = p.get_height()  

        x = p.get_x() + p.get_width() / 2  
        y = p.get_height()  

        ax.annotate(
            label,
            (x, y),
            ha="center",
            va="center",
            size=12,
            xytext=(0, 5),
            textcoords="offset points",
        )  

    plt.show()  

Observations on GICS Sector -

In [ ]:
labeled_barplot(df, 'GICS Sector', perc=True)

Industrials and Financials seem to be the most dominant economic sectors.

In [ ]:
labeled_barplot(df, 'GICS Sub Industry', perc=True)

Electric Utilities, Banks and Biotechnology seemed to be the most dominant GICS sub Industry.

Bivariate Analysis

In [ ]:
plt.figure(figsize=(15, 7))
sns.heatmap(
    df.corr(), annot=True, vmin=-1, vmax=1, fmt=".2f", cmap="Spectral"
)
plt.show()

Net Income and Estimated shares outstanding need to be better correlated than other attributes indicating that Net Income goes hand in hand with shares outstanding.

In [ ]:
plt.figure(figsize=(15,8))
sns.barplot(data=df, x='GICS Sector', y='Price Change', ci=False)  
plt.xticks(rotation=90)
plt.show()

Healthcare and Consumer Staples sectors seem to have maximum Price increase.

In [ ]:
plt.figure(figsize=(15,8))
sns.barplot(data=df, x='GICS Sector', y='Cash Ratio', ci=False) 
plt.xticks(rotation=90)
plt.show()

Cash Ratio seems to be more across IT and Telecommunication services sectors.

In [ ]:
plt.figure(figsize=(15,8))
sns.barplot(data=df, x='GICS Sector', y='P/E Ratio', ci=False)  
plt.xticks(rotation=90)
plt.show()

P/E Ration seems to be more across Energy and Real Estate sectors.

In [ ]:
plt.figure(figsize=(15,8))
sns.barplot(data=df, x='GICS Sector', y='Volatility', ci=False)  
plt.xticks(rotation=90)
plt.show()

Volatility seems to be more across Energy and Materials sectors.

Data Preprocessing

Outlier Check

In [ ]:
plt.figure(figsize=(15, 12))

numeric_columns = df.select_dtypes(include=np.number).columns.tolist()

for i, variable in enumerate(numeric_columns):
    plt.subplot(3, 4, i + 1)
    plt.boxplot(df[variable], whis=1.5)
    plt.tight_layout()
    plt.title(variable)

plt.show()

Scaling

In [ ]:
scaler = StandardScaler()
subset = df[numeric_columns].copy()  
subset_scaled = scaler.fit_transform(subset)
In [ ]:
subset_scaled_df = pd.DataFrame(subset_scaled, columns=subset.columns)

K-means Clustering

Checking Elbow Plot

In [ ]:
k_means_df = subset_scaled_df.copy()
In [ ]:
clusters = range(1, 15)
meanDistortions = []

for k in clusters:
    model = KMeans(n_clusters=k, random_state=1)
    model.fit(subset_scaled_df)
    prediction = model.predict(k_means_df)
    distortion = (
        sum(np.min(cdist(k_means_df, model.cluster_centers_, "euclidean"), axis=1))
        / k_means_df.shape[0]
    )

    meanDistortions.append(distortion)

    print("Number of Clusters:", k, "\tAverage Distortion:", distortion)

plt.plot(clusters, meanDistortions, "bx-")
plt.xlabel("k")
plt.ylabel("Average Distortion")
plt.title("Selecting k with the Elbow Method", fontsize=20)
plt.show()
Number of Clusters: 1 	Average Distortion: 2.5425069919221697
Number of Clusters: 2 	Average Distortion: 2.382318498894466
Number of Clusters: 3 	Average Distortion: 2.2692367155390745
Number of Clusters: 4 	Average Distortion: 2.1745559827866363
Number of Clusters: 5 	Average Distortion: 2.128799332840716
Number of Clusters: 6 	Average Distortion: 2.080400099226289
Number of Clusters: 7 	Average Distortion: 2.0289794220177395
Number of Clusters: 8 	Average Distortion: 1.964144163389972
Number of Clusters: 9 	Average Distortion: 1.9221492045198068
Number of Clusters: 10 	Average Distortion: 1.8513913649973124
Number of Clusters: 11 	Average Distortion: 1.8024134734578485
Number of Clusters: 12 	Average Distortion: 1.7900931879652673
Number of Clusters: 13 	Average Distortion: 1.7417609203336912
Number of Clusters: 14 	Average Distortion: 1.673559857259703
In [ ]:
model = KMeans(random_state=1)
visualizer = KElbowVisualizer(model, k=(1, 15), timings=True)
visualizer.fit(k_means_df) 
visualizer.show() 
Out[ ]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f3b0ca7cfd0>

Checking Silhouette scores

In [ ]:
sil_score = []
cluster_list = range(2, 15)
for n_clusters in cluster_list:
    clusterer = KMeans(n_clusters=n_clusters, random_state=1)
    preds = clusterer.fit_predict((subset_scaled_df))
    score = silhouette_score(k_means_df, preds)
    sil_score.append(score)
    print("For n_clusters = {}, the silhouette score is {})".format(n_clusters, score))

plt.plot(cluster_list, sil_score)
plt.show()
For n_clusters = 2, the silhouette score is 0.43969639509980457)
For n_clusters = 3, the silhouette score is 0.4644405674779404)
For n_clusters = 4, the silhouette score is 0.4577225970476733)
For n_clusters = 5, the silhouette score is 0.43228336443659804)
For n_clusters = 6, the silhouette score is 0.4005422737213617)
For n_clusters = 7, the silhouette score is 0.3976335364987305)
For n_clusters = 8, the silhouette score is 0.40278401969450467)
For n_clusters = 9, the silhouette score is 0.3778585981433699)
For n_clusters = 10, the silhouette score is 0.13458938329968687)
For n_clusters = 11, the silhouette score is 0.1421832155528444)
For n_clusters = 12, the silhouette score is 0.2044669621527429)
For n_clusters = 13, the silhouette score is 0.23424874810104204)
For n_clusters = 14, the silhouette score is 0.12102526472829901)
In [ ]:
model = KMeans(random_state=1)
visualizer = KElbowVisualizer(model, k=(2, 15), metric="silhouette", timings=True)
visualizer.fit(k_means_df)  
visualizer.show() 
Out[ ]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f3b0cf61390>

Appropriate value for K seems to be 8.

In [ ]:
visualizer = SilhouetteVisualizer(KMeans(8, random_state=1))  
visualizer.fit(k_means_df)
visualizer.show()
Out[ ]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f3b0cc29910>

Creating Final Model

In [ ]:
kmeans = KMeans(n_clusters=8, random_state=1)  
kmeans.fit(k_means_df)
Out[ ]:
KMeans(random_state=1)
In [ ]:
df1 = df.copy()

k_means_df["KM_segments"] = kmeans.labels_
df1["KM_segments"] = kmeans.labels_

Cluster Profiling

In [ ]:
km_cluster_profile = df1.groupby("KM_segments").mean()
In [ ]:
km_cluster_profile["count_in_each_segment"] = (
    df1.groupby("KM_segments")["Security"].count().values  
)
In [ ]:
km_cluster_profile.style.highlight_max(color="lightgreen", axis=0)
Out[ ]:
  Current Price Price Change Volatility ROE Cash Ratio Net Cash Flow Net Income Earnings Per Share Estimated Shares Outstanding P/E Ratio P/B Ratio count_in_each_segment
KM_segments                        
0 80.152167 14.571437 1.829679 28.100000 321.850000 625929050.000000 942050500.000000 2.010500 790456335.265000 45.067457 8.307945 20
1 508.534992 5.732177 1.504640 27.250000 150.875000 37895875.000000 1116994125.000000 15.965000 75654420.935000 43.727459 29.581664 8
2 71.100057 4.970680 1.372796 24.988636 51.087121 87930727.272727 1579775988.636364 3.688466 435677482.318371 23.232454 -3.350613 264
3 34.231808 -15.515565 2.832069 48.037037 47.740741 -128651518.518519 -2444318518.518518 -6.284444 503031539.057037 75.627265 1.655990 27
4 108.304002 10.737770 1.165694 566.200000 26.600000 -278760000.000000 687180000.000000 1.548000 349607057.720000 34.898915 -16.851358 5
5 50.517273 5.747586 1.130399 31.090909 75.909091 -1072272727.272727 14833090909.090910 4.154545 4298826628.727273 14.803577 -4.552119 11
6 24.485001 -13.351992 3.482611 802.000000 51.000000 -1292500000.000000 -19106500000.000000 -41.815000 519573983.250000 60.748608 1.565141 2
7 327.006671 21.917380 2.029752 4.000000 106.000000 698240666.666667 287547000.000000 0.750000 366763235.300000 400.989188 -5.322376 3
In [ ]:
for cl in df1["KM_segments"].unique():
    print("In cluster {}, the following companies are present:".format(cl))
    print(df1[df1["KM_segments"] == cl]["Security"].unique())
    print()
In cluster 2, the following companies are present:
['American Airlines Group' 'AbbVie' 'Abbott Laboratories'
 'Archer-Daniels-Midland Co' 'Ameren Corp' 'American Electric Power'
 'AFLAC Inc' 'American International Group, Inc.'
 'Apartment Investment & Mgmt' 'Assurant Inc' 'Arthur J. Gallagher & Co.'
 'Akamai Technologies Inc' 'Albemarle Corp' 'Alaska Air Group Inc'
 'Allstate Corp' 'Applied Materials Inc' 'AMETEK Inc'
 'Affiliated Managers Group Inc' 'Ameriprise Financial'
 'American Tower Corp A' 'AutoNation Inc' 'Anthem Inc.' 'Aon plc'
 'Amphenol Corp' 'Activision Blizzard' 'AvalonBay Communities, Inc.'
 'American Water Works Company Inc' 'American Express Co' 'Boeing Company'
 'Bank of America Corp' 'Baxter International Inc.' 'BB&T Corporation'
 'Bard (C.R.) Inc.' 'The Bank of New York Mellon Corp.' 'Ball Corp'
 'Bristol-Myers Squibb' 'Boston Scientific' 'BorgWarner'
 'Boston Properties' 'Caterpillar Inc.' 'Chubb Limited' 'CBRE Group'
 'Crown Castle International Corp.' 'Carnival Corp.'
 'CF Industries Holdings Inc' 'Citizens Financial Group' 'Church & Dwight'
 'C. H. Robinson Worldwide' 'CIGNA Corp.' 'Cincinnati Financial'
 'Comerica Inc.' 'CME Group Inc.' 'Cummins Inc.' 'CMS Energy'
 'Centene Corporation' 'CenterPoint Energy' 'Capital One Financial'
 'The Cooper Companies' 'CSX Corp.' 'CenturyLink Inc'
 'Cognizant Technology Solutions' 'Citrix Systems' 'CVS Health'
 'Chevron Corp.' 'Dominion Resources' 'Delta Air Lines' 'Du Pont (E.I.)'
 'Deere & Co.' 'Discover Financial Services' 'Quest Diagnostics'
 'Danaher Corp.' 'The Walt Disney Company' 'Discovery Communications-A'
 'Discovery Communications-C' 'Delphi Automotive' 'Digital Realty Trust'
 'Dun & Bradstreet' 'Dover Corp.' 'Dr Pepper Snapple Group' 'Duke Energy'
 'DaVita Inc.' 'Ecolab Inc.' 'Consolidated Edison' 'Equifax Inc.'
 "Edison Int'l" 'Eastman Chemical' 'Equity Residential'
 'Eversource Energy' 'Essex Property Trust, Inc.' 'E*Trade'
 'Eaton Corporation' 'Entergy Corp.' 'Exelon Corp.' "Expeditors Int'l"
 'Expedia Inc.' 'Extra Space Storage' 'Fastenal Co'
 'Fortune Brands Home & Security' 'FirstEnergy Corp'
 'Fidelity National Information Services' 'Fiserv Inc' 'FLIR Systems'
 'Fluor Corp.' 'Flowserve Corporation' 'FMC Corporation'
 'Federal Realty Investment Trust' 'General Dynamics'
 'General Growth Properties Inc.' 'Corning Inc.' 'General Motors'
 'Genuine Parts' 'Garmin Ltd.' 'Goodyear Tire & Rubber'
 'Grainger (W.W.) Inc.' 'Hasbro Inc.' 'Huntington Bancshares'
 'HCA Holdings' 'Welltower Inc.' 'HCP Inc.' 'Hartford Financial Svc.Gp.'
 'Harley-Davidson' "Honeywell Int'l Inc." 'HP Inc.' 'Hormel Foods Corp.'
 'Henry Schein' 'Host Hotels & Resorts' 'The Hershey Company'
 'Humana Inc.' 'International Business Machines' 'IDEXX Laboratories'
 'Intl Flavors & Fragrances' 'International Paper' 'Interpublic Group'
 'Iron Mountain Incorporated' 'Illinois Tool Works' 'Invesco Ltd.'
 'J. B. Hunt Transport Services' 'Jacobs Engineering Group'
 'Juniper Networks' 'Kimco Realty' 'Kansas City Southern'
 'Leggett & Platt' 'Lennar Corp.' 'Laboratory Corp. of America Holding'
 'LKQ Corporation' 'L-3 Communications Holdings' 'Lilly (Eli) & Co.'
 'Lockheed Martin Corp.' 'Alliant Energy Corp' 'Leucadia National Corp.'
 'Southwest Airlines' 'Level 3 Communications' 'LyondellBasell'
 'Mastercard Inc.' 'Mid-America Apartments' 'Macerich' "Marriott Int'l."
 'Masco Corp.' 'Mattel Inc.' "Moody's Corp" 'Mondelez International'
 'MetLife Inc.' 'Mohawk Industries' 'Mead Johnson' 'McCormick & Co.'
 'Martin Marietta Materials' 'Marsh & McLennan' '3M Company'
 'Altria Group Inc' 'Marathon Petroleum' 'Merck & Co.' 'M&T Bank Corp.'
 'Mylan N.V.' 'Navient' 'NASDAQ OMX Group' 'NextEra Energy'
 'Nielsen Holdings' 'Norfolk Southern Corp.' 'Northern Trust Corp.'
 'Nucor Corp.' 'Newell Brands' 'Realty Income Corporation' 'Omnicom Group'
 "O'Reilly Automotive" "People's United Financial" 'Pitney-Bowes'
 'PACCAR Inc.' 'PG&E Corp.' 'Public Serv. Enterprise Inc.' 'PepsiCo Inc.'
 'Principal Financial Group' 'Procter & Gamble' 'Progressive Corp.'
 'Pulte Homes Inc.' 'Philip Morris International' 'PNC Financial Services'
 'Pentair Ltd.' 'Pinnacle West Capital' 'PPG Industries' 'PPL Corp.'
 'Prudential Financial' 'Phillips 66' 'Praxair Inc.' 'PayPal'
 'Ryder System' 'Royal Caribbean Cruises Ltd' 'Robert Half International'
 'Roper Industries' 'Republic Services Inc' 'SCANA Corp'
 'Charles Schwab Corporation' 'Sealed Air' 'Sherwin-Williams'
 'SL Green Realty' 'Scripps Networks Interactive Inc.' 'Southern Co.'
 'Simon Property Group Inc' 'Stericycle Inc' 'Sempra Energy'
 'SunTrust Banks' 'State Street Corp.' 'Synchrony Financial'
 'Stryker Corp.' 'Molson Coors Brewing Company' 'Tegna, Inc.'
 'Torchmark Corp.' 'Thermo Fisher Scientific'
 'The Travelers Companies Inc.' 'Tractor Supply Company' 'Tyson Foods'
 'Tesoro Petroleum Co.' 'Total System Services' 'Texas Instruments'
 'Under Armour' 'United Continental Holdings' 'UDR Inc'
 'Universal Health Services, Inc.' 'United Health Group Inc.' 'Unum Group'
 'Union Pacific' 'United Parcel Service' 'United Technologies'
 'Varian Medical Systems' 'Valero Energy' 'Vulcan Materials'
 'Vornado Realty Trust' 'Verisk Analytics' 'Verisign Inc.' 'Ventas Inc'
 'Wec Energy Group Inc' 'Whirlpool Corp.' 'Waste Management Inc.'
 'Western Union Co' 'Weyerhaeuser Corp.' 'Wyndham Worldwide'
 'Xcel Energy Inc' 'XL Capital' 'Dentsply Sirona' 'Xerox Corp.'
 'Xylem Inc.' 'Yum! Brands Inc' 'Zimmer Biomet Holdings' 'Zions Bancorp'
 'Zoetis']

In cluster 0, the following companies are present:
['Adobe Systems Inc' 'Analog Devices, Inc.' 'Amgen Inc' 'Broadcom'
 'Celgene Corp.' 'eBay Inc.' 'Edwards Lifesciences' 'Facebook'
 'First Solar Inc' 'Frontier Communications' 'Halliburton Co.'
 "McDonald's Corp." 'Monster Beverage' 'Newmont Mining Corp. (Hldg. Co.)'
 'Skyworks Solutions' 'TripAdvisor' 'Vertex Pharmaceuticals Inc'
 'Waters Corporation' 'Wynn Resorts Ltd' 'Yahoo Inc.']

In cluster 1, the following companies are present:
['Alliance Data Systems' 'BIOGEN IDEC Inc.' 'Chipotle Mexican Grill'
 'Equinix' 'Intuitive Surgical Inc.' 'Mettler Toledo' 'Priceline.com Inc'
 'Regeneron']

In cluster 4, the following companies are present:
['Allegion' 'Charter Communications' 'Colgate-Palmolive' 'Kimberly-Clark'
 'S&P Global, Inc.']

In cluster 7, the following companies are present:
['Alexion Pharmaceuticals' 'Amazon.com Inc' 'Netflix Inc.']

In cluster 6, the following companies are present:
['Apache Corporation' 'Chesapeake Energy']

In cluster 3, the following companies are present:
['Anadarko Petroleum Corp' 'Arconic Inc' 'Baker Hughes Inc'
 'Cabot Oil & Gas' 'Concho Resources' 'Devon Energy Corp.' 'EOG Resources'
 'EQT Corporation' 'Freeport-McMoran Cp & Gld' 'Hess Corporation'
 'Hewlett Packard Enterprise' 'Kinder Morgan' 'The Mosaic Company'
 'Marathon Oil Corp.' 'Murphy Oil' 'Noble Energy Inc'
 'Newfield Exploration Co' 'National Oilwell Varco Inc.' 'ONEOK'
 'Occidental Petroleum' 'Quanta Services Inc.' 'Range Resources Corp.'
 'Spectra Energy Corp.' 'Southwestern Energy' 'Teradata Corp.'
 'Williams Cos.' 'Cimarex Energy']

In cluster 5, the following companies are present:
['Citigroup Inc.' 'Ford Motor' 'Gilead Sciences' 'Intel Corp.'
 'JPMorgan Chase & Co.' 'Coca Cola Company' 'Pfizer Inc.' 'AT&T Inc'
 'Verizon Communications' 'Wells Fargo' 'Exxon Mobil Corp.']

In [ ]:
df1.groupby(["KM_segments", "GICS Sector"])['Security'].count()
Out[ ]:
KM_segments  GICS Sector                
0            Consumer Discretionary          3
             Consumer Staples                1
             Energy                          1
             Health Care                     5
             Information Technology          8
             Materials                       1
             Telecommunications Services     1
1            Consumer Discretionary          2
             Health Care                     4
             Information Technology          1
             Real Estate                     1
2            Consumer Discretionary         32
             Consumer Staples               15
             Energy                          5
             Financials                     45
             Health Care                    28
             Industrials                    50
             Information Technology         20
             Materials                      17
             Real Estate                    26
             Telecommunications Services     2
             Utilities                      24
3            Energy                         21
             Industrials                     2
             Information Technology          2
             Materials                       2
4            Consumer Discretionary          1
             Consumer Staples                2
             Financials                      1
             Industrials                     1
5            Consumer Discretionary          1
             Consumer Staples                1
             Energy                          1
             Financials                      3
             Health Care                     2
             Information Technology          1
             Telecommunications Services     2
6            Energy                          2
7            Consumer Discretionary          1
             Health Care                     1
             Information Technology          1
Name: Security, dtype: int64
In [ ]:
plt.figure(figsize=(20, 20))
plt.suptitle("Boxplot of numerical variables for each cluster")

num_col = df.select_dtypes(include=np.number).columns.tolist()

for i, variable in enumerate(num_col):
    plt.subplot(3, 4, i + 1)
    sns.boxplot(data=df1, x="KM_segments", y=variable)

plt.tight_layout(pad=2.0)

We will look into clusters 0, 1, and 2 only because these clusters have more sectors in them.

  • Cluster 0

    • There are 20 companies in this cluster.
    • Cash Ratio is high for these companies.
    • Price Range is moderate.
    • P/E Ratio and P/B Ratio are relatively on the lower side.
  • Cluster 1

    • There are 8 companies in this cluster.
    • Current price, Earnings Per Share and P/B Ratio is high for these companies.
  • Cluster 2

    • There are 264 companies in this cluster.
    • P/B Ratio and P/E Ratio are low for these companies.
    • Current Price and Price Change are relatively on the lower side.

Hierarchical Clustering

Computing Cophenetic Clustering

In [ ]:
hc_df = subset_scaled_df.copy()
In [ ]:
distance_metrics = ["euclidean", "chebyshev", "mahalanobis", "cityblock"]

linkage_methods = ["single", "complete", "average", "weighted"] 

high_cophenet_corr = 0
high_dm_lm = [0, 0]

for dm in distance_metrics:
    for lm in linkage_methods:
        Z = linkage(hc_df, metric=dm, method=lm)
        c, coph_dists = cophenet(Z, pdist(hc_df))
        print(
            "Cophenetic correlation for {} distance and {} linkage is {}.".format(
                dm.capitalize(), lm, c
            )
        )
        if high_cophenet_corr < c:
            high_cophenet_corr = c
            high_dm_lm[0] = dm
            high_dm_lm[1] = lm
            
print('*'*100)
print(
    "Highest cophenetic correlation is {}, which is obtained with {} distance and {} linkage.".format(
        high_cophenet_corr, high_dm_lm[0].capitalize(), high_dm_lm[1]
    )
)
Cophenetic correlation for Euclidean distance and single linkage is 0.9232271494002922.
Cophenetic correlation for Euclidean distance and complete linkage is 0.7873280186580672.
Cophenetic correlation for Euclidean distance and average linkage is 0.9422540609560814.
Cophenetic correlation for Euclidean distance and weighted linkage is 0.8693784298129404.
Cophenetic correlation for Chebyshev distance and single linkage is 0.9062538164750717.
Cophenetic correlation for Chebyshev distance and complete linkage is 0.598891419111242.
Cophenetic correlation for Chebyshev distance and average linkage is 0.9338265528030499.
Cophenetic correlation for Chebyshev distance and weighted linkage is 0.9127355892367.
Cophenetic correlation for Mahalanobis distance and single linkage is 0.925919553052459.
Cophenetic correlation for Mahalanobis distance and complete linkage is 0.7925307202850002.
Cophenetic correlation for Mahalanobis distance and average linkage is 0.9247324030159736.
Cophenetic correlation for Mahalanobis distance and weighted linkage is 0.8708317490180428.
Cophenetic correlation for Cityblock distance and single linkage is 0.9334186366528574.
Cophenetic correlation for Cityblock distance and complete linkage is 0.7375328863205818.
Cophenetic correlation for Cityblock distance and average linkage is 0.9302145048594667.
Cophenetic correlation for Cityblock distance and weighted linkage is 0.731045513520281.
****************************************************************************************************
Highest cophenetic correlation is 0.9422540609560814, which is obtained with Euclidean distance and average linkage.

Euclidean distance

In [ ]:
linkage_methods = ["single", "complete", "average", "centroid", "ward", "weighted"] 

high_cophenet_corr = 0
high_dm_lm = [0, 0]

for lm in linkage_methods:
    Z = linkage(hc_df, metric="euclidean", method=lm)
    c, coph_dists = cophenet(Z, pdist(hc_df))
    print("Cophenetic correlation for {} linkage is {}.".format(lm, c))
    if high_cophenet_corr < c:
        high_cophenet_corr = c
        high_dm_lm[0] = "euclidean"
        high_dm_lm[1] = lm
        
print('*'*100)
print(
    "Highest cophenetic correlation is {}, which is obtained with {} linkage.".format(
        high_cophenet_corr, high_dm_lm[1]
    )
)
Cophenetic correlation for single linkage is 0.9232271494002922.
Cophenetic correlation for complete linkage is 0.7873280186580672.
Cophenetic correlation for average linkage is 0.9422540609560814.
Cophenetic correlation for centroid linkage is 0.9314012446828154.
Cophenetic correlation for ward linkage is 0.7101180299865353.
Cophenetic correlation for weighted linkage is 0.8693784298129404.
****************************************************************************************************
Highest cophenetic correlation is 0.9422540609560814, which is obtained with average linkage.

We see that the cophenetic correlation is maximum with Euclidean distance and average linkage.

Checking Dendrograms

In [ ]:
linkage_methods = ["single", "complete", "average", "centroid", "ward", "weighted"] 

compare_cols = ["Linkage", "Cophenetic Coefficient"]
compare = []

fig, axs = plt.subplots(len(linkage_methods), 1, figsize=(15, 30))

for i, method in enumerate(linkage_methods):
    Z = linkage(hc_df, metric="euclidean", method=method)

    dendrogram(Z, ax=axs[i])
    axs[i].set_title(f"Dendrogram ({method.capitalize()} Linkage)")

    coph_corr, coph_dist = cophenet(Z, pdist(hc_df))
    axs[i].annotate(
        f"Cophenetic\nCorrelation\n{coph_corr:0.2f}",
        (0.80, 0.80),
        xycoords="axes fraction",
    )

    compare.append([method, coph_corr])
In [ ]:
df_cc = pd.DataFrame(compare, columns=compare_cols)
df_cc = df_cc.sort_values(by="Cophenetic Coefficient")
df_cc
Out[ ]:
Linkage Cophenetic Coefficient
4 ward 0.710118
1 complete 0.787328
5 weighted 0.869378
0 single 0.923227
3 centroid 0.931401
2 average 0.942254

The cophenetic correlation is highest for average and average linkage methods.

We will move ahead with average linkage.

6 appears to be the appropriate number of clusters from the dendrogram for average linkage.

Creating model using sklearn

In [ ]:
HCmodel = AgglomerativeClustering(n_clusters=8, affinity="euclidean", linkage="average")  ## Complete the code to define the hierarchical clustering model
HCmodel.fit(hc_df)
Out[ ]:
AgglomerativeClustering(linkage='average', n_clusters=8)
In [ ]:
df2 = df.copy()

hc_df["HC_segments"] = HCmodel.labels_
df2["HC_segments"] = HCmodel.labels_

Cluster Profiling

In [ ]:
hc_cluster_profile = df2.groupby("HC_segments").mean()  
In [ ]:
hc_cluster_profile["count_in_each_segment"] = (
    df2.groupby("HC_segments")["Security"].count().values 
)
In [ ]:
hc_cluster_profile.style.highlight_max(color="lightgreen", axis=0)
Out[ ]:
  Current Price Price Change Volatility ROE Cash Ratio Net Cash Flow Net Income Earnings Per Share Estimated Shares Outstanding P/E Ratio P/B Ratio count_in_each_segment
HC_segments                        
0 327.006671 21.917380 2.029752 4.000000 106.000000 698240666.666667 287547000.000000 0.750000 366763235.300000 400.989188 -5.322376 3
1 25.640000 11.237908 1.322355 12.500000 130.500000 16755500000.000000 13654000000.000000 3.295000 2791829362.100000 13.649696 1.508484 2
2 75.017416 3.937751 1.513415 35.621212 66.545455 -39846757.575758 1549443100.000000 2.904682 562266326.402576 29.091275 -2.146308 330
3 104.660004 16.224320 1.320606 8.000000 958.000000 592000000.000000 3669000000.000000 1.310000 2800763359.000000 79.893133 5.884467 1
4 1274.949951 3.190527 1.268340 29.000000 184.000000 -1671386000.000000 2551360000.000000 50.090000 50935516.070000 25.453183 -1.052429 1
5 276.570007 6.189286 1.116976 30.000000 25.000000 90885000.000000 596541000.000000 8.910000 66951851.850000 31.040405 129.064585 1
6 4.500000 -38.101788 4.559815 687.000000 22.000000 -3283000000.000000 -14685000000.000000 -22.430000 654703522.100000 28.407929 -1.840528 1
7 44.470001 11.397804 2.405408 917.000000 80.000000 698000000.000000 -23528000000.000000 -61.200000 384444444.400000 93.089287 4.970809 1
In [ ]:
for cl in df2["HC_segments"].unique():
    print("In cluster {}, the following companies are present:".format(cl))
    print(df2[df2["HC_segments"] == cl]["Security"].unique())
    print()
In cluster 2, the following companies are present:
['American Airlines Group' 'AbbVie' 'Abbott Laboratories'
 'Adobe Systems Inc' 'Analog Devices, Inc.' 'Archer-Daniels-Midland Co'
 'Ameren Corp' 'American Electric Power' 'AFLAC Inc'
 'American International Group, Inc.' 'Apartment Investment & Mgmt'
 'Assurant Inc' 'Arthur J. Gallagher & Co.' 'Akamai Technologies Inc'
 'Albemarle Corp' 'Alaska Air Group Inc' 'Allstate Corp' 'Allegion'
 'Applied Materials Inc' 'AMETEK Inc' 'Affiliated Managers Group Inc'
 'Amgen Inc' 'Ameriprise Financial' 'American Tower Corp A'
 'AutoNation Inc' 'Anthem Inc.' 'Aon plc' 'Anadarko Petroleum Corp'
 'Amphenol Corp' 'Arconic Inc' 'Activision Blizzard'
 'AvalonBay Communities, Inc.' 'Broadcom'
 'American Water Works Company Inc' 'American Express Co' 'Boeing Company'
 'Baxter International Inc.' 'BB&T Corporation' 'Bard (C.R.) Inc.'
 'Baker Hughes Inc' 'BIOGEN IDEC Inc.' 'The Bank of New York Mellon Corp.'
 'Ball Corp' 'Bristol-Myers Squibb' 'Boston Scientific' 'BorgWarner'
 'Boston Properties' 'Citigroup Inc.' 'Caterpillar Inc.' 'Chubb Limited'
 'CBRE Group' 'Crown Castle International Corp.' 'Carnival Corp.'
 'Celgene Corp.' 'CF Industries Holdings Inc' 'Citizens Financial Group'
 'Church & Dwight' 'C. H. Robinson Worldwide' 'Charter Communications'
 'CIGNA Corp.' 'Cincinnati Financial' 'Colgate-Palmolive' 'Comerica Inc.'
 'CME Group Inc.' 'Chipotle Mexican Grill' 'Cummins Inc.' 'CMS Energy'
 'Centene Corporation' 'CenterPoint Energy' 'Capital One Financial'
 'Cabot Oil & Gas' 'The Cooper Companies' 'CSX Corp.' 'CenturyLink Inc'
 'Cognizant Technology Solutions' 'Citrix Systems' 'CVS Health'
 'Chevron Corp.' 'Concho Resources' 'Dominion Resources' 'Delta Air Lines'
 'Du Pont (E.I.)' 'Deere & Co.' 'Discover Financial Services'
 'Quest Diagnostics' 'Danaher Corp.' 'The Walt Disney Company'
 'Discovery Communications-A' 'Discovery Communications-C'
 'Delphi Automotive' 'Digital Realty Trust' 'Dun & Bradstreet'
 'Dover Corp.' 'Dr Pepper Snapple Group' 'Duke Energy' 'DaVita Inc.'
 'Devon Energy Corp.' 'eBay Inc.' 'Ecolab Inc.' 'Consolidated Edison'
 'Equifax Inc.' "Edison Int'l" 'Eastman Chemical' 'EOG Resources'
 'Equinix' 'Equity Residential' 'EQT Corporation' 'Eversource Energy'
 'Essex Property Trust, Inc.' 'E*Trade' 'Eaton Corporation'
 'Entergy Corp.' 'Edwards Lifesciences' 'Exelon Corp.' "Expeditors Int'l"
 'Expedia Inc.' 'Extra Space Storage' 'Ford Motor' 'Fastenal Co'
 'Fortune Brands Home & Security' 'Freeport-McMoran Cp & Gld'
 'FirstEnergy Corp' 'Fidelity National Information Services' 'Fiserv Inc'
 'FLIR Systems' 'Fluor Corp.' 'Flowserve Corporation' 'FMC Corporation'
 'Federal Realty Investment Trust' 'First Solar Inc'
 'Frontier Communications' 'General Dynamics'
 'General Growth Properties Inc.' 'Gilead Sciences' 'Corning Inc.'
 'General Motors' 'Genuine Parts' 'Garmin Ltd.' 'Goodyear Tire & Rubber'
 'Grainger (W.W.) Inc.' 'Halliburton Co.' 'Hasbro Inc.'
 'Huntington Bancshares' 'HCA Holdings' 'Welltower Inc.' 'HCP Inc.'
 'Hess Corporation' 'Hartford Financial Svc.Gp.' 'Harley-Davidson'
 "Honeywell Int'l Inc." 'Hewlett Packard Enterprise' 'HP Inc.'
 'Hormel Foods Corp.' 'Henry Schein' 'Host Hotels & Resorts'
 'The Hershey Company' 'Humana Inc.' 'International Business Machines'
 'IDEXX Laboratories' 'Intl Flavors & Fragrances' 'International Paper'
 'Interpublic Group' 'Iron Mountain Incorporated'
 'Intuitive Surgical Inc.' 'Illinois Tool Works' 'Invesco Ltd.'
 'J. B. Hunt Transport Services' 'Jacobs Engineering Group'
 'Juniper Networks' 'JPMorgan Chase & Co.' 'Kimco Realty' 'Kimberly-Clark'
 'Kinder Morgan' 'Coca Cola Company' 'Kansas City Southern'
 'Leggett & Platt' 'Lennar Corp.' 'Laboratory Corp. of America Holding'
 'LKQ Corporation' 'L-3 Communications Holdings' 'Lilly (Eli) & Co.'
 'Lockheed Martin Corp.' 'Alliant Energy Corp' 'Leucadia National Corp.'
 'Southwest Airlines' 'Level 3 Communications' 'LyondellBasell'
 'Mastercard Inc.' 'Mid-America Apartments' 'Macerich' "Marriott Int'l."
 'Masco Corp.' 'Mattel Inc.' "McDonald's Corp." "Moody's Corp"
 'Mondelez International' 'MetLife Inc.' 'Mohawk Industries'
 'Mead Johnson' 'McCormick & Co.' 'Martin Marietta Materials'
 'Marsh & McLennan' '3M Company' 'Monster Beverage' 'Altria Group Inc'
 'The Mosaic Company' 'Marathon Petroleum' 'Merck & Co.'
 'Marathon Oil Corp.' 'M&T Bank Corp.' 'Mettler Toledo' 'Murphy Oil'
 'Mylan N.V.' 'Navient' 'Noble Energy Inc' 'NASDAQ OMX Group'
 'NextEra Energy' 'Newmont Mining Corp. (Hldg. Co.)'
 'Newfield Exploration Co' 'Nielsen Holdings'
 'National Oilwell Varco Inc.' 'Norfolk Southern Corp.'
 'Northern Trust Corp.' 'Nucor Corp.' 'Newell Brands'
 'Realty Income Corporation' 'ONEOK' 'Omnicom Group' "O'Reilly Automotive"
 'Occidental Petroleum' "People's United Financial" 'Pitney-Bowes'
 'PACCAR Inc.' 'PG&E Corp.' 'Public Serv. Enterprise Inc.' 'PepsiCo Inc.'
 'Pfizer Inc.' 'Principal Financial Group' 'Procter & Gamble'
 'Progressive Corp.' 'Pulte Homes Inc.' 'Philip Morris International'
 'PNC Financial Services' 'Pentair Ltd.' 'Pinnacle West Capital'
 'PPG Industries' 'PPL Corp.' 'Prudential Financial' 'Phillips 66'
 'Quanta Services Inc.' 'Praxair Inc.' 'PayPal' 'Ryder System'
 'Royal Caribbean Cruises Ltd' 'Regeneron' 'Robert Half International'
 'Roper Industries' 'Range Resources Corp.' 'Republic Services Inc'
 'SCANA Corp' 'Charles Schwab Corporation' 'Spectra Energy Corp.'
 'Sealed Air' 'Sherwin-Williams' 'SL Green Realty'
 'Scripps Networks Interactive Inc.' 'Southern Co.'
 'Simon Property Group Inc' 'S&P Global, Inc.' 'Stericycle Inc'
 'Sempra Energy' 'SunTrust Banks' 'State Street Corp.'
 'Skyworks Solutions' 'Southwestern Energy' 'Synchrony Financial'
 'Stryker Corp.' 'AT&T Inc' 'Molson Coors Brewing Company'
 'Teradata Corp.' 'Tegna, Inc.' 'Torchmark Corp.'
 'Thermo Fisher Scientific' 'TripAdvisor' 'The Travelers Companies Inc.'
 'Tractor Supply Company' 'Tyson Foods' 'Tesoro Petroleum Co.'
 'Total System Services' 'Texas Instruments' 'Under Armour'
 'United Continental Holdings' 'UDR Inc' 'Universal Health Services, Inc.'
 'United Health Group Inc.' 'Unum Group' 'Union Pacific'
 'United Parcel Service' 'United Technologies' 'Varian Medical Systems'
 'Valero Energy' 'Vulcan Materials' 'Vornado Realty Trust'
 'Verisk Analytics' 'Verisign Inc.' 'Vertex Pharmaceuticals Inc'
 'Ventas Inc' 'Verizon Communications' 'Waters Corporation'
 'Wec Energy Group Inc' 'Wells Fargo' 'Whirlpool Corp.'
 'Waste Management Inc.' 'Williams Cos.' 'Western Union Co'
 'Weyerhaeuser Corp.' 'Wyndham Worldwide' 'Wynn Resorts Ltd'
 'Cimarex Energy' 'Xcel Energy Inc' 'XL Capital' 'Exxon Mobil Corp.'
 'Dentsply Sirona' 'Xerox Corp.' 'Xylem Inc.' 'Yahoo Inc.'
 'Yum! Brands Inc' 'Zimmer Biomet Holdings' 'Zions Bancorp' 'Zoetis']

In cluster 5, the following companies are present:
['Alliance Data Systems']

In cluster 0, the following companies are present:
['Alexion Pharmaceuticals' 'Amazon.com Inc' 'Netflix Inc.']

In cluster 7, the following companies are present:
['Apache Corporation']

In cluster 1, the following companies are present:
['Bank of America Corp' 'Intel Corp.']

In cluster 6, the following companies are present:
['Chesapeake Energy']

In cluster 3, the following companies are present:
['Facebook']

In cluster 4, the following companies are present:
['Priceline.com Inc']

In [ ]:
df2.groupby(["HC_segments", "GICS Sector"])['Security'].count()
Out[ ]:
HC_segments  GICS Sector                
0            Consumer Discretionary          1
             Health Care                     1
             Information Technology          1
1            Financials                      1
             Information Technology          1
2            Consumer Discretionary         38
             Consumer Staples               19
             Energy                         28
             Financials                     48
             Health Care                    39
             Industrials                    53
             Information Technology         29
             Materials                      20
             Real Estate                    27
             Telecommunications Services     5
             Utilities                      24
3            Information Technology          1
4            Consumer Discretionary          1
5            Information Technology          1
6            Energy                          1
7            Energy                          1
Name: Security, dtype: int64
In [ ]:
plt.figure(figsize=(20, 20))
plt.suptitle("Boxplot of numerical variables for each cluster")

for i, variable in enumerate(num_col):
    plt.subplot(3, 4, i + 1)
    sns.boxplot(data=df2, x="HC_segments", y=variable)

plt.tight_layout(pad=2.0)

We will look into clusters 0, 1, and 2 only because these clusters have more companies in them.

Cluster 0
    There are 3 companies in this cluster.
    Price Change and P/E Ratio are high for these companies.
    Net Cash Flow is moderate.

Cluster 1
    There are 2 companies in this cluster.
    Net Cash Flow and Net Income are high for these companies.

Cluster 2
    There are 330 companies in this cluster.
    P/B Ratio and P/E Ratio are low for these companies.
    Net Cash Flow is low.

K-means vs Hierarchical Clustering

You compare several things, like:

  • Which clustering technique took less time for execution?
  • Which clustering technique gave you more distinct clusters, or are they the same?
  • How many observations are there in the similar clusters of both algorithms?
  • How many clusters are obtained as the appropriate number of clusters from both algorithms?

You can also mention any differences or similarities you obtained in the cluster profiles from both the clustering techniques.

Actionable Insights and Recommendations

  • K Means took less time for execution.
  • K Means technique gave me more distinct clusters.